A short gallery of images generated by my Penrose tiling generator, available on github.
The Initial triangle is defined with the origin at the centre of its base:
This initial triangle is inflated for 5 generations. The default configuration is used for its appearance.
# example1.py
import math
from penrose import PenroseP3, BtileL, psi
# A simple example starting with a BL tile
scale = 100
tiling = PenroseP3(scale, ngen=5)
theta = 2*math.pi / 5
rot = math.cos(theta) + 1j*math.sin(theta)
A = -scale/2 + 0j
B = scale/2 * rot
C = scale/2 / psi + 0j
tiling.set_initial_tiles([BtileL(A, B, C)])
tiling.make_tiling()
tiling.write_svg('example1.svg')
The five initial BS tiles are arranged as below, with their vertices calculated by successive rotations of the edge BA1.
# example4.py
import math
from penrose import PenroseP3, BtileS, BtileL
# A "sun"
scale = 100
config={'tile-opacity': 0.9, 'stroke-colour': '#800',
'Stile-colour': '#f00', 'Ltile-colour': '#ff0'}
tiling = PenroseP3(scale*1.1, ngen=4, config=config)
theta = math.pi / 5
alpha = math.cos(theta)
rot = math.cos(theta) + 1j*math.sin(theta)
A1 = scale + 0.j
B = 0 + 0j
C1 = C2 = A1 * rot
A2 = A3 = C1 * rot
C3 = C4 = A3 * rot
A4 = A5 = C4 * rot
C5 = -A1
tiling.set_initial_tiles([BtileS(A1, B, C1), BtileS(A2, B, C2),
BtileS(A3, B, C3), BtileS(A4, B, C4),
BtileS(A5, B, C5)])
tiling.make_tiling()
tiling.write_svg('example4.svg')
The five initial tiles are laid out as below, with the vertices p, q, r and s calculated by rotation of the edges AB1 and AC5.
The completed star is rotated by 90 degrees so that one of its vertices points upwards and the arc and tile colours customized.
# example3.py
import math
from penrose import PenroseP3, BtileL, psi
# A star with five-fold symmetry
# The Golden ratio
phi = 1 / psi
scale = 100
config = {'draw-arcs': True,
'Aarc-colour': '#ff5e25',
'Carc-colour': 'none',
'Stile-colour': '#090',
'Ltile-colour': '#9f3',
'rotate': math.pi/2}
tiling = PenroseP3(scale*2, ngen=5, config=config)
theta = 2*math.pi / 5
rot = math.cos(theta) + 1j*math.sin(theta)
B1 = scale
p = B1 * rot
q = p*rot
C5 = -scale * phi
r = C5 / rot
s = r / rot
A = [0]*5
B = [scale, p, p, q, q]
C = [s, s, r, r, C5]
tiling.set_initial_tiles([BtileL(*v) for v in zip(A, B, C)])
tiling.make_tiling()
tiling.write_svg('example3.svg')
Comments
Comments are pre-moderated. Please be patient and your comment will appear soon.
GZ 3 years, 3 months ago
Well done sir! Amazing aperiodic pattern beautifully visualized
Link | ReplyNew Comment