The decay of an ensemble of radioactive nuclei over a period of time can be simulated as follows. Consider the time period to be divided into short, discrete intervals of duration $\Delta t \ll \tau$, where $\tau$ is the lifetime for the decay (which is related to the half-life, $t_{1/2}$, through $\tau = t_{1/2}/\ln 2$). The probability that a given nucleus will decay in time $\Delta t$ is $p = \Delta t / \tau$.
At each time-step, the simulation loops over the undecayed nuclei from the previous time-step and draws a random number from the uniform distribution on $[0,1)$: if this random number is less than $p$, the nucleus is considered to have decayed.
The code below defines a function to carry out this simulation for a set of $N_0 = 500$ $\mathrm{^{14}C}$ nuclei with half-life $t_{1/2} = 5730\;\mathrm{years}$. nsims = 10
such simulations are carried out and saved to a comma-separated file, 14C-sim.csv
, with a brief, explanatory header.
import random
import numpy as np
def decay_sim(thalf, N0=500, tgrid=None, nhalflives=4):
"""Simulate the radioactive decay of N0 nuclei.
thalf is the half-life in some units of time.
If tgrid is provided, it should be a sequence of evenly-spaced time points
to run the simulation on.
If tgrid is None, it is calculated from nhalflives, the number of
half-lives to run the simulation for.
"""
# Calculate the lifetime from the half-life.
tau = thalf / np.log(2)
if tgrid is None:
# Create a grid of Nt time points up to tmax.
Nt, tmax = 100, thalf * nhalflives
tgrid, dt = np.linspace(0, tmax, Nt, retstep=True)
else:
# tgrid was provided: deduce Nt and the time step, dt.
Nt = len(tgrid)
dt = tgrid[1] - tgrid[0]
N = np.empty(Nt, dtype=int)
N[0] = N0
# The probability that a given nucleus will decay in time dt.
p = dt / tau
for i in range(1, Nt):
# At each time step, start with the undecayed nuclei from the previous.
N[i] = N[i-1]
# Consider each nucleus in turn and decide whether it decays or not.
for j in range(N[i-1]):
r = random.random()
if r < p:
# This nucleus decays.
N[i] -= 1
return tgrid, N
N0 = 500
# Half life of 14C in years.
thalf = 5730
# Use Nt time steps up to tmax years.
Nt, tmax = 100, 20000
tgrid = np.linspace(0, tmax, Nt)
# Repeat the simulation "experiment" nsims times.
nsims = 10
Nsim = np.empty((Nt, nsims))
for i in range(nsims):
_, Nsim[:, i] = decay_sim(thalf, N0, tgrid)
# Save the time grid, followed by the simulations in columns. We save integer
# values for the data and create a comma-delimited file with a two-line header.
np.savetxt('14C-sim.csv', np.hstack((tgrid[:, None], Nsim)),
fmt = '%d', delimiter=',',
header=f'Simulations of the radioactive decay of {N0} 14C nuclei.\n'
f'Columns are time in years followed by {nsims} decay simulations.'
)
The contents of the output file, 14C-sim.csv
, will resemble:
# Simulations of the radioactive decay of 500 14C nuclei.
# Columns are time in years followed by 10 decays.
0,500,500,500,500,500,500,500,500,500,500
202,489,486,487,491,487,486,485,487,490,490
404,479,478,483,479,477,476,480,474,484,482
606,462,467,470,463,464,463,470,454,474,471
...
This file can be read in to a NumPy array with:
arr = np.loadtxt('14C-sim.csv', delimiter=',')
See also Exercise P6.5.7.