ExB drift for constant crossed electric and magnetic fields


A charged particle moving in an electromagnetic field exhibits a "drift" in addition to its gyromotion and any acceleration due to a component of the electric field parallel to the magnetic field. This drift motion has velocity $(\boldsymbol{E}\times\boldsymbol{B})/B^2$ and is therefore known as the $\boldsymbol{E}\times\boldsymbol{B}$ drift. In the simple case of constant, crossed magnetic and electric fields, the Lorentz equation of motion, $m\ddot{\boldsymbol{r}} = q(\boldsymbol{E} + \dot{\boldsymbol{r}} \times \boldsymbol{B})$ can be solved analytically to give the particle's trajectory: $$ \begin{align} x &= \frac{1}{\Omega}\left( v_\perp - \frac{E_y}{B_z}\right)\cos \Omega t + \frac{E_y}{B_z},\\ y &= \frac{1}{\Omega}\left( v_\perp - \frac{E_y}{B_z}\right)\left(1 - \cos \Omega t \right),\\ z &= 0, \end{align} $$ where the fields are $\boldsymbol{B} = (0,0,B_z)$ and $\boldsymbol{E} = (0,E_y,0)$; the initial velocity is $\boldsymbol{v} = (0,v_\perp,0)$; the gyrofrequency is $\Omega = qB_z/m$; and $m$ and $q$ are the particle's mass and charge respectively.

The Jupyter Notebook here depicts this solution and is also available on my github page.

enter image description here

Currently unrated


Comments are pre-moderated. Please be patient and your comment will appear soon.

There are currently no comments

New Comment


required (not published)