Learning Scientific Programming with Python (2nd edition)

P8.2.8: Modelling a radioactive decay chain

Question P8.2.8

The radioactive decay chain of $\mathrm{^{212}Pb}$ to the stable isotope $\mathrm{^{208}Pb}$ may be considered as the following sequence of steps with the given rate constants, $k_i$: $$ \begin{align*} \mathrm{^{212}Pb} & \rightarrow \mathrm{^{212}Bi} + \beta^- & \quad k_1 &= 1.816 \times 10^{-5}\;\mathrm{s^{-1}},\\ \mathrm{^{212}Bi} & \rightarrow \mathrm{^{208}Tl} + \alpha & \quad k_2 &= 6.931 \times 10^{-5}\;\mathrm{s^{-1}},\\ \mathrm{^{212}Bi} & \rightarrow \mathrm{^{212}Po} + \beta^- & \quad k_3 &= 1.232 \times 10^{-4}\;\mathrm{s^{-1}},\\ \mathrm{^{208}Tl} & \rightarrow \mathrm{^{208}Pb} + \beta^- & \quad k_4 &= 3.851 \times 10^{-3}\;\mathrm{s^{-1}},\\ \mathrm{^{212}Po} & \rightarrow \mathrm{^{208}Pb} + \alpha & \quad k_5 &= 2.310 \;\mathrm{s^{-1}}. \end{align*} $$ By considering the following first-order differential equations giving the rates of change for each species, plot their concentrations as a function of time. $$ \begin{align*} \frac{\mathrm{d[^{212}Pb]}}{\mathrm{d}t} &= -k_1 \mathrm{[^{212}Pb]}\\ \frac{\mathrm{d[^{212}Bi]}}{\mathrm{d}t} &= k_1 \mathrm{[^{212}Pb]} - k_2 \mathrm{[^{212}Bi]} - k_3 \mathrm{[^{212}Bi]}\\ \frac{\mathrm{d[^{208}Tl]}}{\mathrm{d}t} &= k_2 \mathrm{[^{212}Bi]} - k_4 \mathrm{[^{208}Tl]}\\ \frac{\mathrm{d[^{212}Po]}}{\mathrm{d}t} &= k_3 \mathrm{[^{212}Bi]} - k_5 \mathrm{[^{212}Po]}\\ \frac{\mathrm{d[^{208}Pb]}}{\mathrm{d}t} &= k_4 \mathrm{[^{208}Tl]} + k_5 \mathrm{[^{212}Po]} \end{align*} $$ If all the intermediate species, J, are treated in "steady state" (i.e. $\mathrm{d[J]}/\mathrm{d}t = 0$, the approximate expression for the $\mathrm{^{208}Pb}$ concentration as a function of time is $$ [\mathrm{^{208}Pb}] = [\mathrm{^{212}Pb}]_0 \left(1-e^{-k_1t}\right). $$ Compare the "exact" result obtained by numerical integration of above the differential equations with this approximate answer.